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Abstract
A method of finding conserved quantities of nonlinear ordinary difference
equations is briefly discussed. The method is based on the hypothesis that the
conserved quantities are expressed by a ratio of two polynomials of dependent
variables. We obtain the conserved quantities of the ‘discrete equation of motion
of an anharmonic oscillator’ and ‘a nonlinear difference equation of third order’.

PACS numbers: 02.30.Jr, 02.03.Ik, 05.45.Yv

1. Introduction

Discretization of integrable systems has been the focus of intense research activity. Typical
soliton equations have been discretized in a series of papers [1–5]. Discretization of integrable
nonlinear ordinary differential equations has been studied in [6–12]. Recent progress in
integrable discrete systems has uncovered remarkable relationships in otherwise unrelated areas
of research such as numerical algorithms [13], discrete geometry [14], cellular automaton [15],
and quantum integrable systems [16].

However, no systematic method of calculating the conserved quantities of the ordinary
nonlinear difference equations has been known. We present a method of calculating the
conserved quantities which is based on the hypothesis that the conserved quantities are
expressed by a ratio of two polynomials of dependent variables. We explain the method
taking the following equations as examples: ‘the discrete equation of motion of an anharmonic
oscillator’ and ‘a nonlinear difference equation of third order’.

2. Discretization of an anharmonic oscillator

We consider an equation of motion of an anharmonic oscillator

d2x

dt2
+ ax + bx3 = 0 a, b > 0. (1)
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We discretize the equation of motion using the bilinear transformation method [6, 11, 12].
Let x(t) = g(t)/f (t). Then equation (1) is transformed into the following form:

[D2
t g · f + agf ]f − g[D2

t f · f − bg2] = 0 (2)

where the bilinear operator D2
t g · f is defined by

D2
t g · f = d2f

dt2
g − 2

df

dt

dg

dt
+ f

d2g

dt2
. (3)

Note that equation (2) is invariant under the following gauge transformation:

f (t) → f (t) exp
∫ t

h(t) dt (4)

g(t) → g(t) exp
∫ t

h(t) dt (5)

where h(t) is an arbitrary function of t . Equation (2) is decoupled to the bilinear equations by
introducing an arbitrary function γ (t),

D2
t g · f + agf = γ (t)gf (6)

D2
t f · f − bg2 = γ (t)f 2. (7)

We may choose γ (t) = 0 by the gauge transformation (4) and (5) with h(t) = γ (t)/2. Hence
equation (1) is transformed into the bilinear form

D2
t g · f + agf = 0 (8)

D2
t f · f − bg2 = 0. (9)

We discretize the bilinear equation taking the gauge invariance and the time reversibility of
the equation into account. First we replace the bilinear operators in equations (6) and (7) by
the corresponding bilinear difference operators

D2
t g · f → �2

t g(t) · f (t) (10)

D2
t f · f → �2

t f (t) · f (t) (11)

where

�2
t g(t) · f (t) ≡ [g(t + δ)f (t − δ) − 2g(t)f (t) + g(t − δ)f (t + δ)]/δ2 (12)

�2
t f (t) · f (t) ≡ 2[f (t + δ)f (t − δ) − f (t)f (t)]/δ2 (13)

δ being a time interval. We assume that the discrete bilinear equations are invariant under the
exponential gauge transformation

f (t) → f (t) exp ct (14)

g(t) → g(t) exp ct (15)

c being a constant of t . We consider the following discrete bilinear equations:

�2
t g(t) · f (t) + a{γ11g(t)f (t) + γ12[g(t + δ)f (t − δ) + g(t − δ)f (t + δ)]} = 0 (16)

�2
t f (t) · f (t) − b{γ21f (t + δ)f (t − δ) + γ22f (t)2} = 0 (17)

which are invariant under the gauge transformations (14) and (15), where γ11, γ12, γ21 and γ22

are free parameters satisfying the relations

γ11 + 2γ12 = 1 γ21 + γ22 = γ.

The discrete bilinear forms are transformed, through the dependent variable transformation
g(t) = x(t)f (t), into

[x(t + δ) + x(t − δ)](1 + δ2aγ12)f (t + δ)f (t − δ) = (2 − δ2aγ11)x(t)f 2(t) (18)

[2 − δ2bγ21x(t + δ)x(t − δ)]f (t + δ)f (t − δ) = [2 + δ2bγ22x
2(t)]f 2(t) (19)
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which are combined to give

[x(t + δ) + x(t − δ)](1 + δ2aγ12)

2 − δ2bγ21x(t + δ)x(t − δ)
= [2 − δ2aγ11]x(t)

2 + δ2bγ22x2(t)
. (20)

Let t = nδ, n being integers. Then equation (20) is written as

xn+1 − 2xn + xn−1 + a[c11xn + c12(xn+1 + xn−1)]

+b[c21xn+1xnxn−1 + c22x
2
n(xn+1 + xn−1)] = 0 (21)

where

c11 = δ2γ11 (22)

c12 = δ2γ12 (23)

c21 = δ2(1 − 1
2δ2aγ11)γ21 (24)

c22 = δ2 1
2 (1 + δ2aγ12)γ22. (25)

Equation (21) gives an explicit equation of motion

xn+1 = f̂1(xn) − xn−1f̂2(xn)

f̂2(xn) − xn−1f̂3(xn)
(26)

where

f̂1(xn) = c11xn (27)

f̂2(xn) = c12 + bc22x
2
n (28)

f̂3(xn) = −bc21xn (29)

which has the same form as that of the QRT system [17],

xn+1 = f1(xn) − xn−1f2(xn)

f2(xn) − xn−1f3(xn)
. (30)

The QRT system is known to exhibit a conserved quantity,

H = N

D
(x = xn−1, y = xn) (31)

N = a11x
2y2 + a12x

2y + a13x
2 + a21xy2 + a22xy + a23x + a31y

2 + a32y + a33 (32)

D = b11x
2y2 + b12x

2y + b13x
2 + b21xy2 + b22xy + b23x + b31y

2 + b32y + b33 (33)

provided that f1(x), f2(x) and f3(x) are expressed by

f1(x) = (a21x
2 + a22x + a23)(b31x

2 + b32x + b33)

−(a31x
2 + a32x + a33)(b21x

2 + b22x + b23) (34)

f2(x) = (a31x
2 + a32x + a33)(b11x

2 + b12x + b13)

−(a11x
2 + a12x + a13)(b31x

2 + b32x + b33) (35)

f3(x) = (a11x
2 + a12x + a13)(b21x

2 + b22x + b23)

−(a21x
2 + a22x + a23)(b11x

2 + b12x + b13). (36)

However, it is not easy to find relations between our f̂1, f̂2, f̂3 and their f1, f2, f3. We shall
return to this point after finding the conserved quantity of equation (26).

Finally we note that the discrete equation (26) is reduced, in the limit of small δ, to the
equation of motion of the anharmonic oscillator

d2x

dt2
+ ax + bx3 = 0. (37)
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3. Conserved quantity of the discrete equation of motion of the anharmonic oscillator

We conjecture that the conserved quantity Hn of the discrete equation of motion of the
anharmonic oscillator is expressed with a ratio of polynomials of variables xn and xn−1, which
has the following properties:

(i) The discrete equation is invariant under the transformation

xn+j → xn−j j = ±1

which implies the time reversibility of the equation. Accordingly the conserved quantity
is assumed to be a symmetric function of xn and xn−1.

(ii) The discrete equation is explicit. Hence cubic terms such as x3
n and x3

n−1 are excluded
from the Hn.

Hence we have the conserved quantity Hn expressed with

Hn = a0 + a1p1(n) + · · · + a5p5(n)

b0 + b1p1(n) + · · · + b5p5(n)
(38)

where

p1(n) = xn + xn−1 (39)

p2(n) = xnxn−1 (40)

p3(n) = x2
n + x2

n−1 (41)

p4(n) = x2
nxn−1 + xnx

2
n−1 (42)

p5(n) = x2
nx

2
n−1. (43)

We rewrite the above form as

1 + c1p1(n) + c2p2(n) + · · · + c5p5(n) = 0 (44)

where

cj = (aj − Hnbj )/(a0 − Hnb0) for j = 1, 2, . . . , 5. (45)

We note that all cj are conserved quantities, which depend only on the initial values of the
discrete equation. Accordingly we have a set of linear equations for c1, c2, . . . , c5

1 + c1p1(n) + c2p2(n) + · · · + c5p5(n) = 0 (46)

1 + c1p1(n + 1) + c2p2(n + 1) + · · · + c5p5(n + 1) = 0 · · · · · · (47)

1 + c1p1(n + 4) + c2p2(n + 4) + · · · + c5p5(n + 4) = 0. (48)

Solving the linear equations we obtain

cj (n) =

∣∣∣∣∣∣∣∣∣

p1(n) p2(n) · · · −1 · · · p5(n)

p1(n + 1) p2(n + 1) · · · −1 · · · p5(n + 1)

p1(n + 2) p2(n + 2) · · · −1 · · · p5(n + 2)

p1(n + 3) p2(n + 3) · · · −1 · · · p5(n + 3)

p1(n + 4) p2(n + 4) · · · −1 · · · p5(n + 4)

∣∣∣∣∣∣∣∣∣

/
�(n) (49)

for j = 1, 2, . . . , 5, where

�(n) =

∣∣∣∣∣∣∣∣∣

p1(n) p2(n) · · · p5(n)

p1(n + 1) p2(n + 1) · · · p5(n + 1)

p1(n + 2) p2(n + 2) · · · p5(n + 2)

p1(n + 3) p2(n + 3) · · · p5(n + 3)

p1(n + 4) p2(n + 4) · · · p5(n + 4)

∣∣∣∣∣∣∣∣∣
. (50)
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The assumption that all cj (n) are conserved quantities, namely

cj (n + 1) − cj (n) = 0 for j = 1, 2, . . . , 5 (51)

is transformed into the following condition:∣∣∣∣∣∣∣∣∣∣∣

1 p1(n) p2(n) · · · p5(n)

1 p1(n + 1) p2(n + 1) · · · p5(n + 1)

1 p1(n + 2) p2(n + 2) · · · p5(n + 2)

1 p1(n + 3) p2(n + 3) · · · p5(n + 3)

1 p1(n + 4) p2(n + 4) · · · p5(n + 4)

1 p1(n + 5) p2(n + 5) · · · p5(n + 5)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (52)

Because the numerator of cj (n + 1) − cj (n) for j = 1, for example, is∣∣∣∣∣∣∣∣∣

−1 p2(n + 1) · · · p5(n + 1)

−1 p2(n + 2) · · · p5(n + 2)

−1 p2(n + 3) · · · p5(n + 3)

−1 p2(n + 4) · · · p5(n + 4)

−1 p2(n + 5) · · · p5(n + 5)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

p1(n) p2(n) · · · p5(n)

p1(n + 1) p2(n + 1) · · · p5(n + 1)

p1(n + 2) p2(n + 2) · · · p5(n + 2)

p1(n + 3) p2(n + 3) · · · p5(n + 3)

p1(n + 4) p2(n + 4) · · · p5(n + 4)

∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣

−1 p2(n) · · · p5(n)

−1 p2(n + 1) · · · p5(n + 1)

−1 p2(n + 2) · · · p5(n + 2)

−1 p2(n + 3) · · · p5(n + 3)

−1 p2(n + 4) · · · p5(n + 4)

∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣

p1(n + 1) p2(n + 1) · · · p5(n + 1)

p1(n + 2) p2(n + 2) · · · p5(n + 2)

p1(n + 3) p2(n + 3) · · · p5(n + 3)

p1(n + 4) p2(n + 4) · · · p5(n + 4)

p1(n + 5) p2(n + 5) · · · p5(n + 5)

∣∣∣∣∣∣∣∣∣
which is reduced, by the Jacobi identity of determinants, to

=

∣∣∣∣∣∣∣∣∣∣∣

1 p1(n) p2(n) · · · p5(n)

1 p1(n + 1) p2(n + 1) · · · p5(n + 1)

1 p1(n + 2) p2(n + 2) · · · p5(n + 2)

1 p1(n + 3) p2(n + 3) · · · p5(n + 3)

1 p1(n + 4) p2(n + 4) · · · p5(n + 4)

1 p1(n + 5) p2(n + 5) · · · p5(n + 5)

∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

p2(n + 1) · · · p5(n + 1)

p2(n + 2) · · · p5(n + 2)

p2(n + 3) · · · p5(n + 3)

p2(n + 4) · · · p5(n + 4)

∣∣∣∣∣∣∣
.

Accordingly cj (n + 1) = cj (n), and cj (n) are conserved quantities if equation (52) holds.
In general we conjecture, for a given nonlinear discrete equation of order k + 1

xn+1 = F(xn, xn−1, . . . , xn−k) (53)

that a conserved quantity Hn is given by

Hn = a0 + a1p1(n) + · · · + aNpN(n)

b0 + b1p1(n) + · · · + bNpN(n)
(54)

where

pj (n) = pj (xn, xn−1, . . . , xn−k) for j = 1, 2, . . . , N. (55)

Then we have linear equations for cj = (aj − Hn)/(a0 − Hnb0),

c1p1(n + l) + c2p2(n + l) + · · · + cNpN(n + l) = −1 for all l. (56)
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The following quantities:

cj (n) =

∣∣∣∣∣∣∣∣∣∣

p1(n) p2(n) · · · −1 · · · pN(n)

p1(n + 1) p2(n + 1) · · · −1 · · · pN(n + 1)

p1(n + 2) p2(n + 2) · · · −1 · · · pN(n + 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p1(n + N − 1) p2(n + N − 1) · · · −1 · · · pN(n + N − 1)

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

p1(n) p2(n) · · · pj (n) · · · pN(n)

p1(n + 1) p2(n + 1) · · · pj (n + 1) · · · pN(n + 1)

p1(n + 2) p2(n + 2) · · · pj (n + 2) · · · pN(n + 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
p1(n + N − 1) p2(n + N − 1) · · · pj (n + N − 1) · · · pN(n + N − 1)

∣∣∣∣∣∣∣∣∣∣
for j = 1, 2, . . . , N are the conserved quantities of the discrete equation

xn+1 = F(xn, xn−1, . . . , xn−k) for integers n

provided that ∣∣∣∣∣∣∣∣∣∣

1 p1(n) p2(n) · · · pN(n)

1 p1(n + 1) p2(n + 1) · · · pN(n + 1)

1 p1(n + 2) p2(n + 2) · · · pN(n + 2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 p1(n + N) p2(n + N) · · · pN(n + N)

∣∣∣∣∣∣∣∣∣∣
= 0. (57)

All conserved quantities of the discrete equation

xn+1 = F(xn, xn−1, . . . , xn−k)

are, in principle, obtained by checking the condition (57). However, in practice, it is not easy
to check the condition for N > 5 by using a computer at hand. In order to minimize a number
of unknown parameters, we evaluate them numerically at first. Returning to equation (44),
we solve it numerically and find that c1 = c4 = 0. Thus the linear equations to be solved are
reduced to

c2p1(n + l) + c3p2(n + l) + c5p5(n + l) = −1 for all l (58)

where

p2(n) = xnxn−1 (59)

p3(n) = x2
n + x2

n−1 (60)

p5(n) = x2
nx

2
n−1. (61)

Now it is easy to check the condition∣∣∣∣∣∣∣

1 p2(n) p3(n) p5(n)

1 p2(n + 1) p3(n + 1) p5(n + 1)

1 p2(n + 2) p3(n + 2) p5(n + 2)

1 p2(n + 3) p3(n + 3) p5(n + 3)

∣∣∣∣∣∣∣
= 0. (62)

Solving equation (58) for l = −1, 0, 1 we find that one of the conserved quantities is expressed
by

H0 = N0

D0
(63)

N0 = c11[c12(x
2
n + x2

n−1) − c11xnxn−1] + b(c11c22 + c12c21)x
2
nx

2
n−1 (64)

D0 = c11[c11 + bc21(x
2
n + x2

n−1)] + b2c2
21x

2
nx

2
n−1 (65)



How to find the conserved quantities of nonlinear discrete equations 10383

which is the conserved quantity of the discrete equation of motion of the anharmonic oscillator
equation (26). The rank of the Jacobi matrix shows that other conserved quantities c2, c3 and c5

are functionally dependent on H0. Here we remark the relation to the QRT system. Comparing
our conserved quantity H0 with H of the QRT system we find

a11 = b(c11c22 + c12c21) a12 = 0 a13 = c11c12 (66)

a21 = 0 a22 = −c2
11 a23 = 0 (67)

a31 = a13 a32 = 0 a33 = 0 (68)

b11 = b2c2
21 b12 = 0 b13 = bc11c21 (69)

b21 = 0 b22 = 0 b23 = 0 (70)

b31 = bc11c21 b32 = 0 b23 = c2
11. (71)

Accordingly we find that f1(x), f2(x) and f3(x) of the QRT system are expressed with
f̂1(xn), f̂2(xn) and f̂3(xn) of the discrete equation of motion as follows:

f1(x) = −c2
11(c11 + bc21x

2
n)f̂1(xn) (72)

f2(x) = −c2
11(c11 + bc21x

2
n)f̂2(xn) (73)

f3(x) = −c2
11(c11 + bc21x

2
n)f̂3(xn) (74)

which shows that the discrete equation of motion (21) is one of the QRT system. We note that
Suris [7] has studied a discrete equation which is expressed as a QRT system of the special
form

xn+1 = g1(xn) − xn−1g2(xn)

g2(xn) − xn−1g3(xn)
(75)

where

g1(xn) = a + (2 − 2e + b)xn + cx2
n/3 (76)

g2(xn) = 1 − (e + cxn/3 + dx2
n/2) (77)

g3(xn) = 0 (78)

where a, b, c, d, e are constant parameters. The conserved quantity is a polynomial of the
dependent variables:

Ĥ (n) = 1
2 (xn − xn−1)

2 − 1
2a(xn + xn−1)

2

− 1
2bxnxn−1 − 1

6cxnxn−1(xn + xn−1) − 1
4x2

nx
2
n−1 − 1

2e(xn − xn−1)
2. (79)

4. Conserved quantities of the difference equation of third order

We take the following third-order difference equation as the next example:

xn+2 = (1 + xn + xn+1)/xn−1 (80)

which is known to show ‘a recurrence of period 8’ [18], namely the system returns to the initial
state after mapping eight times.

The discrete equation (80) is of the third order and is time reversible. Accordingly the
conserved quantity Hn is a function of xn+1, xn, xn−1 and is symmetric with respect to xn+1 and
xn−1. We assume the conserved quantity of the following form:

Hn = a0 + a1p1(n) + · · · + a13p13(n)

b0 + b1p1(n) + · · · + b13p13(n)
(81)
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with

p1(n) = x(n) (82)

p2(n) = x(n + 1) + x(n − 1) (83)

p3(n) = x(n)2 (84)

p4(n) = x(n)(x(n + 1) + x(n − 1)) (85)

p5(n) = x(n + 1)2 + x(n − 1)2 (86)

p6(n) = x(n + 1)x(n − 1) (87)

p7(n) = x(n)2(x(n + 1) + x(n − 1)) (88)

p8(n) = x(n)(x(n + 1)2 + x(n − 1)2) (89)

p9(n) = x(n + 1)x(n − 1)(x(n + 1) + x(n − 1)) (90)

p10(n) = x(n)2(x(n + 1)2 + x(n − 1)2) (91)

p11(n) = x(n)2x(n + 1)x(n − 1) (92)

p12(n) = x(n)x(n + 1)x(n − 1)(x(n + 1) + x(n − 1)) (93)

p13(n) = x(n + 1)2x(n − 1)2 (94)

x(n) being xn for any n. The number N of unknown parameters cj of the equation is greater
than ten and it is not easy to check the condition (57).

We follow a different approach to the problem. We note that equation (80) is singular at
xn = 0:

xn+2 → ∞ as xn−1 → 0.

Taking this property of the equation into account, we assume that the denominator of the
conserved quantity H(n) is of the form (xn+1xnxn−1)

n, n being an integer. Hence a trial form
of Hn is

Hn =
[ 13∑

j=0

c(j)pj (n)

]/
[xn+1xnxn−1]. (95)

The unknown parameters c(j), for j = 0, 1, 2, . . . , 13 are determined by the equation

Hn+1 − Hn = 0 (96)

which gives

c(1) = 2 c(2) = 2 c(3) = 1 c(4) = 3 c(5) = 1

c(6) = 3 c(7) = 1 c(8) = 1 c(9) = 1 c(10) = 0

c(11) = 1 c(12) = 1 c(13) = 0

where we have chosen an arbitrary parameter c(0) = 1. Accordingly one of the conserved
quantities is given by

H(1)
n = [1 + 2x(n) + 2(x(n + 1) + x(n − 1)) + x(n)2 + 3x(n)(x(n + 1) + x(n − 1))

+x(n + 1)2 + x(n − 1)2 + 3x(n + 1)x(n − 1) +

x(n)2(x(n + 1) + x(n − 1)) + x(n)(x(n + 1)2 + x(n − 1)2)

+x(n + 1)x(n − 1)(x(n + 1) + x(n − 1)) + x(n)2x(n + 1)x(n − 1)

+x(n)x(n + 1)x(n − 1)(x(n + 1) + x(n − 1))]/[x(n + 1)x(n)x(n − 1)]. (97)

Another conserved quantity is obtained by including new terms in the trial form of H(1)
n :

H(2)
n =

[ 15∑
j=0

c(j)pj (n)

]/
[xn+1xnxn−1] (98)
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where

p14(n) = x(n)3 (99)

p15(n) = x(n + 1)3 + x(n − 1)3. (100)

The cubic terms such as x(n+1)3, x(n)3 and x(n−1)3 in the numerator of H(2)
n are permissible

in this case because they are divided by the denominator x(n + 1)x(n)x(n − 1). Substituting
H(2)

n into equation (96) we determine new parameters c(j), for j = 0, 1, 2, . . . , 15 as follows:

c(1) = 1 c(2) = 0 c(3) = 2 c(4) = 1 c(5) = 0

c(6) = 1 c(7) = 1 c(8) = 0 c(9) = 1 c(10) = 0

c(11) = 0 c(12) = 0 c(13) = 1 c(14) = 1 c(15) = 0

where we have fixed two redundant parameters c(14) and c(0) to be 1 and 0, respectively.
Accordingly the second conserved quantity H(2)

n is given by

H(2)
n = [x(n) + 2x(n)2 + x(n)(x(n + 1) + x(n − 1)) + x(n + 1)x(n − 1)

+x(n)2(x(n + 1) + x(n − 1)) + x(n + 1)x(n − 1)(x(n + 1) + x(n − 1))

+x(n + 1)2x(n − 1)2 + x(n)3]/[x(n + 1)x(n)x(n − 1)]. (101)

We have found two conserved quantities, H(1)
n and H(2)

n , of the third-order difference equation

xn+2xn−1 = 1 + xn + xn+1. (102)

The present procedure of finding conserved quantities is applied to other difference equations.
In the appendix we give a list of third-order difference equations of the form

xn+2xn−1 = f (xn, xn+1) (103)

whose conserved quantities are obtained by following the present procedure.

Appendix. Third-order difference equations exhibiting two conserved quantities

We have investigated difference equations of third order of the following special form:

xn+2xn−1 = f (xn, xn+1). (104)

It is found by numerical simulation that the algebraic entropy [19, 20] of the map shows the
polynomial growth of the degree if f (xn, xn+1) is one of the following forms:

(Y1) f (xn, xn+1) = a0 + a1xn + a1xn+1 + a3xnxn+1

a3 + b1xn + b1xn+1 + b3xnxn+1

(Y2) f (xn, xn+1) = a0 + a0xn + a0xn+1 + a3xnxn+1

a0 + a3xn + a3xn+1 + a3xnxn+1

(Y3) f (xn, xn+1) = −a0 + a0xn − a0xn+1 + a3xnxn+1

a0 + a3xn − a3xn+1 − a3xnxn+1

(Y4) f (xn, xn+1) = a0 + a1xn + a1xn+1 + a1xnxn+1

b0 + b0xn + b0xn+1 + b0xnxn+1

(Y5) f (xn, xn+1) = a1xn − a1xn+1 + a3xnxn+1

a3 − b1xn + b1xn+1

(Y6) f (xn, xn+1) = a3xnxn+1

b1xn + b1xn+1 + b3xnxn+1

(Y7) f (xn, xn+1) = a0 + a1xn

a1xn + a0xnxn+1
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(Y8) f (xn, xn+1) = a0 + a1xn

−a1xn + a0xnxn+1

(Y9) f (xn, xn+1) = a1xn + a1xnxn+1

a1 + a1xn

where a0, a1, . . . , b3 are constant parameters. Equation (80) is a special case (a3 = 0) of
equation (Y2). These equations are transformed, through the transformation xn = gn/fn, into
the bilinear forms which are invariant under the exponential gauge-transformation,

fn → fn exp(ct) gn → gn exp(ct). (105)

We have found, following the present procedure, two functionally independent conserved
quantities of all equations listed above. The computer output of the conserved quantities can
be found at http://www.hirota.info.waseda.ac.jp/˜hirota/conserved.zip
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